
# **VARIO RTD 2**

# I/O-Erweiterungsmodul mit zwei Eingangskanälen für den Anschluss von Temperatur-Messwiderständen (RTD)



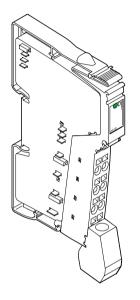
Bedienungsanleitung

02/2003

57551001



Diese Anleitung ist nur gültig in Verbindung mit den Beschreibungen der verwendeten Buskoppler.


# **Funktionsbeschreibung**

Das Modul VARIO RTD 2 ist zum Einsatz innerhalb einer VARIO-Station vorgesehen. Mit diesem Modul steht Ihnen ein zweikanaliges Eingangsmodul für resistive Temperatursensoren zur Verfügung. Das Modul unterstützt Platin- und Nickelsensoren nach der Norm DIN und der Richtlinie SAMA. Zusätzlich werden die Sensoren CU10, CU50, CU53 sowie KTY81 und KTY84 unterstützt.

Die Darstellung der Messtemperatur erfolgt über 16-Bit-Werte in zwei Datenworten (pro Kanal ein Wort).

#### Merkmale

- Zwei Eingänge für resistive Temperatursensoren
- Konfiguration der Kanäle über BUS
- Darstellung der Messwerte in drei verschiedenen Formaten möglich
- Anschluss der Sensoren in 2-, 3- und 4-Leitertechnik



57550010

Bild 1 Das Mo

Das Modul VARIO RTD 2 mit aufgesetztem Stecker



Alle Artikel des VARIO-Systems werden inclusive Stecker und Beschriftungsfeld ausgeliefert

### **VARIO RTD 2**

# Inhaltsverzeichnis

| Funktionsbeschreibung                 | 1  |
|---------------------------------------|----|
| Sicherheitshinweis                    | 4  |
| Montagevorschrift                     | 4  |
| Internes Prinzipschaltbild            | 5  |
| Potentialtrennung                     | 6  |
| Anschlusshinweise                     | 6  |
| Anschlussbeispiele                    | 7  |
| Programmierdaten                      | 8  |
| Prozessdatenworte                     | 8  |
| Formate zur Darstellung der Messwerte | 16 |
| Messbereiche                          | 22 |
| Messfehler                            | 24 |
| Toleranz- und Temperaturverhalten     | 28 |
| Technische Daten                      | 30 |
| Bestelldaten                          | 32 |

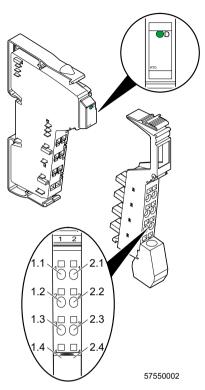



Bild 2 VARIO RTD 2 mit zugehörigem Stecker

### Lokale Diagnose- und Status-Anzeigen

| Bez. | Farbe | Bedeutung   |
|------|-------|-------------|
| D    | grün  | Busdiagnose |

# Klemmenbelegung bei 2-/3-Leiteranschluss

| Klemm-<br>punkte | Signal           | Belegung                           |
|------------------|------------------|------------------------------------|
| 1.1              | I <sub>1</sub> + | RTD Sensor 1                       |
| 1.2              | I <sub>1</sub> - | Konstantstromspeisung              |
| 1.3              | U <sub>1-</sub>  | Mess-Eingang Sensor 1              |
| 2.1              | l <sub>2</sub> + | RTD Sensor 2                       |
| 2.2              | l <sub>2</sub> - | Konstantstromspeisung              |
| 2.3              | U <sub>2-</sub>  | Mess-Eingang Sensor 2              |
| 1.4, 2.4         | Schirm           | Schirmanschluss<br>(Kanal 1 und 2) |

### Klemmenbelegung bei 4-Leiteranschluss an Kanal 1 und 2-Leiteranschluss an Kanal 2

| Klemm-<br>punkte | Signal           | Belegung                           |
|------------------|------------------|------------------------------------|
| 1.1              | I <sub>1</sub> + | RTD Sensor 1                       |
| 1.2              | I <sub>1</sub> - | Konstantstromspeisung              |
| 1.3              | U <sub>1</sub> - | Mess-Eingang Sensor 1              |
| 2.3              | U <sub>1</sub> + | Mess-Eingang Sensor 1              |
| 2.1              | l <sub>2</sub> + | RTD Sensor 2                       |
| 2.2              | l <sub>2</sub> - | Konstantstromspeisung              |
| 1.4, 2.4         | Schirm           | Schirmanschluss<br>(Kanal 1 und 2) |



In 4-Leitertechnik können Sie einen Sensor ausschließlich am Kanal 1 anschließen.

### Sicherheitshinweis



Berücksichtigen Sie bei der Projektierung, dass zwischen den analogen Eingängen und dem BUS keine Trennspannung spezifiziert ist. Daraus ergibt sich z. B. für eine Thermistor-Erfassung, dass der Anwender im Bedarfsfall Signale mit **sicherer Trennung** zur Verfügung stellen muss.

# Montagevorschrift

Ein hoher Strom durch die Potentialrangierer  $U_M$  und  $U_S$  hat zur Folge, dass sich die Potentialrangierer erwärmen und somit die Klemmeninnentemperatur steigt. Um den Strom durch die Potentialrangierer der Analog-Klemmen möglichst gering zu halten, beachten Sie folgende Vorschrift:



#### Bauen Sie für alle Analog-Klemmen einen eigenen Hauptkreis auf!

Falls das in Ihrer konkreten Anwendung nicht möglich ist und Sie Analog-Klemmen in einem Hauptkreis mit anderen Klemmen einsetzen, platzieren Sie die Analog-Klemmen hinter allen anderen Klemmen am Ende des Hauptkreises.

4 9499-040-68918

# **Internes Prinzipschaltbild**

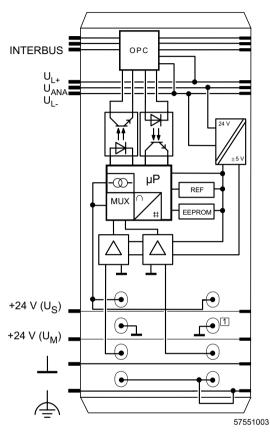
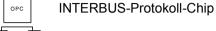




Bild 3 Interne Beschaltung der Klemmpunkte

# Legende:



⊉**≭**、<u></u> Optokoppler

DC/DC-Wandler mit galvanischer Trennung

Mikroprozessor mit Multiplexer und Analog-Digital-Wandler

REF Referenzspannung

Elektrisch löschbares, wiederprogrammierbares ROM

# **Potentialtrennung**

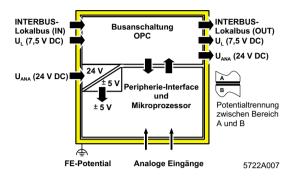



Bild 4 Potentialtrennung der einzelnen Funktionsbereiche

### **Anschlusshinweise**

#### Anschluss der Thermoelemente



Schließen Sie die Temperatur-Messwiderstände **grundsätzlich** mit paarig verdrillten und geschirmten Leitungen an.

### **Anschluss der Schirmung**



Der Anschluss der Schirmung ist in den Anschlussbeispielen dargestellt (Bild 5).

Schließen Sie die Schirmung an der Inline-Klemme über die Schirmanschluss-Schelle an. Über die Schelle wird der Schirm klemmenseitig direkt mit FE verbunden. Zusätzliche Beschaltungen sind nicht erforderlich.

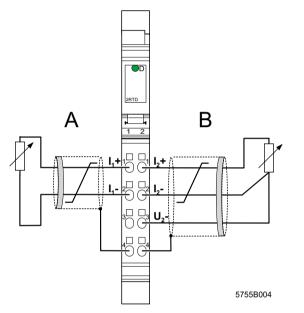
Isolieren Sie die Schirmung am Sensor.

#### **Anschluss eines Sensors in 4-Leitertechnik**



Ein Sensor kann in 4-Leitertechnik ausschließlich am Kanal 1 angeschlossen werden. In diesem Fall kann der Sensor am Kanal 2 nur in 2-Leitertechnik angeschlossen werden!

**6** 9499-040-68918


# **Anschlussbeispiele**



Wenn Sie den Schirm an der Klemme anschließen, müssen Sie den Schirm auf der Sensorseite isolieren (im Bild 5 und Bild 6 grau dargestellt).

Verwenden Sie zum Anschluss der Sensoren den Stecker mit Schirmanschluss. In Bild 5 ist der Anschluss schematisch (ohne Schirmanschluss-Stecker) dargestellt.

#### **Anschluss von passiven Sensoren**



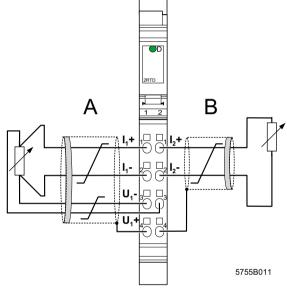



Bild 5 Anschluss von Sensoren in 2- und 3-Leitertechnik mit Schirmanschluss

Bild 6 Anschluss von Sensoren in 4- und 2-Leitertechnik mit Schirmanschluss

A Kanal 1; 2-Leitertechnik

A Kanal 1; 4-Leitertechnik
B Kanal 2; 2-Leitertechnik

B Kanal 2; 3-Leitertechnik

# Programmierdaten

| ID-Code              | 7F <sub>hex</sub> (127 <sub>dez</sub> ) |
|----------------------|-----------------------------------------|
| Längen-Code          | 02 <sub>hex</sub>                       |
| Eingabe-Adressraum   | 4 Byte                                  |
| Ausgabe-Adressraum   | 4 Byte                                  |
| Parameterkanal (PCP) | 0 Byte                                  |
| Registerlänge (Bus)  | 4 Byte                                  |

# **Prozessdatenworte**

# Ausgangsdatenworte zur Konfiguration der Klemme (vgl. Seite 11)

| (Wort.Bit)-      | Wort     |            |              |        |                   |    |                | W | ort C | ) |            |        |     |   |      |      |   |  |  |
|------------------|----------|------------|--------------|--------|-------------------|----|----------------|---|-------|---|------------|--------|-----|---|------|------|---|--|--|
| Sicht            | Bit      | 15         | 14           | 13     | 12                | 11 | 10             | 9 | 8     | 7 | 6          | 5      | 4   | 3 | 2    | 1    | 0 |  |  |
| (Byte.Bit)- Byte |          |            |              | Byte 0 |                   |    |                |   |       |   |            | Byte 1 |     |   |      |      |   |  |  |
| Sicht            | Bit      | 7          | 6            | 5      | 4                 | 3  | 2              | 1 | 0     | 7 | 6          | 5      | 4   | 3 | 2    | 1    | 0 |  |  |
| Kanal 1          | Belegung | Kon<br>rat | figu-<br>ion |        | Anschluss-<br>art |    | R <sub>0</sub> |   |       |   | flö-<br>ng | For    | mat | S | Sens | orty | р |  |  |

| (Wort.Bit)- | Wort     |            |              |    |              |                |    | W | ort 1 |                       |        |     |     |   |      |      |   |
|-------------|----------|------------|--------------|----|--------------|----------------|----|---|-------|-----------------------|--------|-----|-----|---|------|------|---|
| Sicht       | Bit      | 15         | 14           | 13 | 12           | 11             | 10 | 9 | 8     | 7                     | 6      | 5   | 4   | 3 | 2    | 1    | 0 |
| (Byte.Bit)- | Byte     | Byte 2     |              |    |              |                |    |   |       |                       | Byte 3 |     |     |   |      |      |   |
| Sicht       | Bit      | 7          | 6            | 5  | 4            | 3              | 2  | 1 | 0     | 7                     | 6      | 5   | 4   | 3 | 2    | 1    | 0 |
| Kanal 2     | Belegung | Kon<br>rat | figu-<br>ion |    | nluss-<br>rt | R <sub>0</sub> |    |   |       | Au <sup>-</sup><br>su |        | For | mat | S | Sens | orty | р |

# Zuordnung der Klemmpunkte zum Eingangsdatenwort (vgl. Seite 14)

| (Wort.Bit)- | Wort           |                                           | Wort 0          |     |       |                    |     |       |   |      |        |     |       |                  |     |     |   |  |
|-------------|----------------|-------------------------------------------|-----------------|-----|-------|--------------------|-----|-------|---|------|--------|-----|-------|------------------|-----|-----|---|--|
| Sicht       | Bit            | 15                                        | 14              | 13  | 12    | 11                 | 10  | 9     | 8 | 7    | 6      | 5   | 4     | 3                | 2   | 1   | 0 |  |
| (Byte.Bit)- | Byte           | Byte 0                                    |                 |     |       |                    |     |       |   |      | Byte 1 |     |       |                  |     |     |   |  |
| Sicht       | Bit            | 7                                         | 7 6 5 4 3 2 1 0 |     |       |                    |     |       |   | 7    | 6      | 5   | 4     | 3                | 2   | 1   | 0 |  |
| Klemm-      | Signal         | Klemmpunkt 1.1: I <sub>1</sub> + Sensor 1 |                 |     |       |                    |     |       |   |      |        |     |       |                  |     |     |   |  |
| punkte      | Signalbezug    | Kle                                       | mmp             | unk | t 1.2 | : I <sub>1</sub> - | Sen | sor ' | 1 | Klei | mmp    | unk | t 1.3 | U <sub>1</sub> - | Ser | sor | 1 |  |
| Kanal 1     | Schirmung (FE) | Kle                                       | mmp             | unk | t 1.4 |                    |     |       |   |      |        |     |       |                  |     |     |   |  |

| (Wort.Bit)- | Wort        |                 | Wort 1 |     |       |                    |     |       |                 |      |     |     |       |                  |     |      |   |
|-------------|-------------|-----------------|--------|-----|-------|--------------------|-----|-------|-----------------|------|-----|-----|-------|------------------|-----|------|---|
| Sicht       | Bit         | 15              | 14     | 13  | 12    | 11                 | 10  | 9     | 8               | 7    | 6   | 5   | 4     | 3                | 2   | 1    | 0 |
| (Byte.Bit)- | Byte        |                 |        |     | Byt   | e 2                |     |       |                 |      |     |     | Byt   | e 3              |     |      |   |
| Sicht       | Bit         | 7 6 5 4 3 2 1 0 |        |     |       |                    |     | 0     | 7 6 5 4 3 2 1 0 |      |     |     |       |                  |     |      |   |
| Klemm-      | Signal      | Klei            | nmp    | unk | t 2.1 | : l <sub>2</sub> + | Ser | sor   | 2               |      |     |     |       |                  |     |      |   |
| punkte      | Signalbezug | Klei            | nmp    | unk | t 2.2 | : l <sub>2</sub> - | Sen | sor 2 | 2               | Klei | mmp | unk | t 2.3 | U <sub>1</sub> + | Sei | nsor | 2 |
| Kanal 2     | Schirmung   | Klei            | nmp    | unk | t 2.4 |                    |     |       |                 |      |     |     |       |                  |     |      |   |

#### Prozessdaten-Ausgangsworte

Über die zwei Prozessdaten-Ausgangsworte können Sie die Kanäle der Klemme konfigurieren. Folgende Konfigurationsmöglichkeiten bestehen für jeden Kanal unabhängig von dem anderen Kanal:

- Art des Anschlusses des Sensors
- Wert des Bezugswiderstandes R<sub>0</sub>
- Einstellung der Auflösung
- Auswahl des Formates zur Darstellung der Messwerte
- Einstellung des Sensortyps

Für die Anschlussart besteht eine Abhängigkeit zwischen den beiden Kanälen. Sobald der 4-Leiter-Modus für Kanal 1 aktiviert ist, kann der Kanal 2 nur noch in 2-Leiter-Anschlusstechnik betrieben werden. Der 4-Leiter-Anschluss steht nur für den Kanal 1 zur Verfügung.

Konfigurationsfehler werden durch den entsprechenden Fehler-Code angezeigt, falls das Format IB Standard als Format zur Darstellung der Messwerte konfiguriert ist.

Die Konfigurationseinstellung wird nur flüchtig gespeichert. Sie muss in jedem Feldbus-Zyklus mit übertragen werden.

Nach dem Anlegen der Spannung (Power Up) an die Inline-Station erscheint in den Prozess-daten-Eingangsworten die Meldung "Messwert ungültig" (Fehler-Code 8004<sub>hex</sub>). Nach maximal 1 s ist die voreingestellte Konfiguration übernommen und der erste Messwert verfügbar.

Voreinstellung:

Anschluss: 3-Leitertechnik

 $R_0$ : 100  $\Omega$ Auflösung: 0,1 °C

Format: Format 1 (IB Standard)

Sensortyp: PT 100 (DIN)

Ändern Sie die Konfiguration, wird der betreffende Kanal neu initialisiert. In den Prozessdaten-Ausgangsworten erscheint für maximal 100 ms die Meldung "Messwert ungültig" (Fehler-Code 8004<sub>hex</sub>).

Wenn die Konfiguration ungültig ist, wird die Meldung "Konfiguration ungültig" ausgegeben (Fehler-Code 8010<sub>hex</sub>).



Beachten Sie bitte, dass die erweiterte Diagnose nur möglich ist, wenn das Format IB Standard als Format zur Darstellung der Messwerte konfiguriert ist. Da dieses Format auf der Klemme voreingestellt ist, steht es nach Anlegen der Spannung sofort zur Verfügung.

Für die Konfiguration jedes Kanals steht ein Prozessdaten-Ausgangswort zur Verfügung.

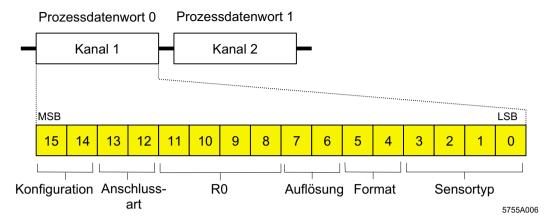



Bild 7 Prozessdaten-Ausgangsworte

#### Bit 15 und Bit 14:

Um die Klemme bzw. einen bestimmten Kanal zu konfigurieren, müssen Sie Bit 15 des zugehörigen Ausgangswortes auf 1 setzen. Ist Bit 15 = 0, ist die voreingestellte Konfiguration aktiv. Bit 14 ist zur Zeit ohne Bedeutung, setzen Sie es deshalb auf 0.

#### Bit 13 und Bit 12:

| Co   | de   | Anschlussart           |
|------|------|------------------------|
| dez. | bin. |                        |
| 0    | 00   | 3-Leiter               |
| 1    | 01   | 2-Leiter               |
| 2    | 10   | 4-Leiter (nur Kanal 1) |
| 3    | 11   | reserviert             |

#### Bit 11 bis Bit 8

| Co   | de   | <b>R</b> <sub>0</sub> [Ω] |
|------|------|---------------------------|
| dez. | bin. |                           |
| 0    | 0000 | 100                       |
| 1    | 0001 | 10                        |
| 2    | 0010 | 20                        |
| 3    | 0011 | 30                        |
| 4    | 0100 | 50                        |
| 5    | 0101 | 120                       |
| 6    | 0110 | 150                       |
| 7    | 0111 | 200                       |

| Co   | de   | <b>R</b> <sub>0</sub> [Ω] |
|------|------|---------------------------|
| dez. | bin. |                           |
| 8    | 1000 | 240                       |
| 9    | 1001 | 300                       |
| 10   | 1010 | 400                       |
| 11   | 1011 | 500                       |
| 12   | 1100 | 1000                      |
| 13   | 1101 | 1500                      |
| 14   | 1110 | 2000                      |
| 15   | 1111 | 3000 (einstellbar)        |

#### Bit 7 und Bit 6:

| Co   | de   | Auflösung bei Se | flösung bei Sensortyp |            |            |  |  |  |  |  |
|------|------|------------------|-----------------------|------------|------------|--|--|--|--|--|
| dez. | bin. | 0 bis 10         | 13                    | 14         | 15         |  |  |  |  |  |
| 0    | 00   | 0,1 °C           | 1 %                   | 0,1 Ω      | 1 Ω        |  |  |  |  |  |
| 1    | 01   | 0,01 °C          | 0,1 %                 | 0,01 Ω     | 0,1 Ω      |  |  |  |  |  |
| 2    | 10   | 0,1 °F           | reserviert            | reserviert | reserviert |  |  |  |  |  |
| 3    | 11   | 0,01 °F          |                       |            |            |  |  |  |  |  |

### Bit 5 und Bit 4:

| Co   | de   | Format                                                                 |  |  |  |  |  |
|------|------|------------------------------------------------------------------------|--|--|--|--|--|
| dez. | bin. |                                                                        |  |  |  |  |  |
| 0    | 00   | Format 1: IB Standard<br>(15 Bit +Vorzeichen mit erweiterter Diagnose) |  |  |  |  |  |
|      |      | kompatibel zum ST-Format                                               |  |  |  |  |  |
| 1    | 01   | Format 2<br>(12 Bit + Vorzeichen +<br>3 Diagnose-Bits)                 |  |  |  |  |  |
| 2    | 10   | Format 3<br>(15 Bit + Vorzeichen)                                      |  |  |  |  |  |
| 3    | 11   | reserviert                                                             |  |  |  |  |  |

# Bit 3 bis Bit 0:

| Co   | de   | Sensortyp              |
|------|------|------------------------|
| dez. | bin. |                        |
| 0    | 0000 | Pt DIN                 |
| 1    | 0001 | Pt SAMA                |
| 2    | 0010 | Ni DIN                 |
| 3    | 0011 | Ni SAMA                |
| 4    | 0100 | Cu10                   |
| 5    | 0101 | Cu50                   |
| 6    | 0110 | Cu53                   |
| 7    | 0111 | Ni 1000 (Landis & Gyr) |

| Co   | de   | Sensortyp              |
|------|------|------------------------|
| dez. | bin. |                        |
| 8    | 1000 | Ni 500 (Viessmann)     |
| 9    | 1001 | KTY 81-110             |
| 10   | 1010 | KTY 84                 |
| 11   | 1011 | reserviert             |
| 12   | 1100 | reserviert             |
| 13   | 1101 | Potentiometer [%]      |
| 14   | 1110 | linear R: 0 bis 400 Ω  |
| 15   | 1111 | linear R: 0 bis 4000 Ω |

#### Prozessdaten-Eingangsworte

Je Kanal werden die Messwerte über die Prozessdaten-Eingangsworte zur Anschaltbaugruppe oder zum Rechner übertragen.

Zur Darstellung der Eingangsdaten stehen drei Formate zur Verfügung, die in Bild 8 dargestellt sind. Nähere Informationen zu den Formaten finden Sie im Abschnitt "Formate zur Darstellung der Messwerte" auf Seite 16).

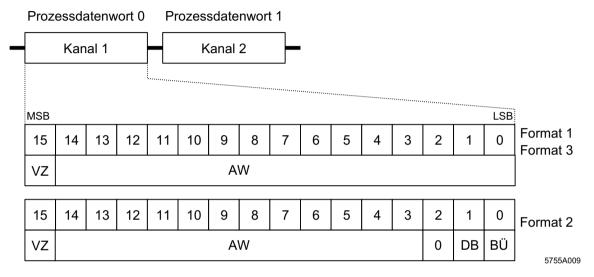



Bild 8 Reihenfolge der Prozessdaten-Eingangsworte und Darstellung der Bits des ersten Prozessdatenwortes in den verschiedenen Formaten

MSB Most Significant Bit (höherwertigstes Bit)

LSB Least Significant Bit (niederwertigstes Bit)

VZ Vorzeichen

AW Analogwert

0 reserviert

DB Drahtbruch/Kurzschluss

BÜ Bereichsüberschreitung

Das Prozessdatenformat 1 "IB Standard" unterstützt eine erweiterte Diagnose. Folgende Fehler-Codes sind möglich:

| Code (hex) | Fehler                                                           |
|------------|------------------------------------------------------------------|
| 8001       | Messbereich verlassen (überschritten)                            |
| 8002       | Drahtbruch oder Kurzschluss (nur im Temperaturbereich verfügbar) |
| 8004       | Messwert ungültig/kein gültiger Messwert verfügbar               |
| 8010       | Konfiguration ungültig                                           |
| 8040       | Klemme defekt                                                    |
| 8080       | Messbereich verlassen (unterschritten)                           |

### Drahtbruch-/Kurzschlusserkennung:

Drahtbruch wird entsprechend der folgenden Tabelle erkannt:

| Defekte       | Temp     | <mark>eraturmessb</mark> | ereich   | Widerstandsmessbereich |          |          |  |  |
|---------------|----------|--------------------------|----------|------------------------|----------|----------|--|--|
| Sensorleitung | 2-Leiter | 3-Leiter                 | 4-Leiter | 2-Leiter               | 3-Leiter | 4-Leiter |  |  |
| I+            | ja       | ja                       | ja       | ja                     | ja       | nein     |  |  |
| I-            | ja       | ja                       | ja       | ja                     | ja       | nein     |  |  |
| U+            | _        | _                        | ja       | _                      | _        | ja       |  |  |
| U-            | _        | ja                       | ja       | _                      | ja       | ja       |  |  |

Ja Drahtbruch/Kurzschluss wird erkannt.

Die Leitung ist bei dieser Anschlusstechnik nicht angeschlossen.

Nein Drahtbruch/Kurzschluss wird nicht erkannt, da der Wert ein gültiger Messwert ist.

# Formate zur Darstellung der Messwerte

### Format 1: IB Standard (Default-Einstellung)

Der Messwert wird in den Bits 14 bis 0 dargestellt. Ein zusätzliches Bit (Bit 15) steht als Vorzeichen-Bit zur Verfügung.

Dieses Format unterstützt eine erweiterte Diagnose. Werte > 8000<sub>hex</sub> signalisieren einen Fehler. Die Fehler-Codes sind auf Seite 15 angegeben.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|----|---|---|---|---|---|---|---|
| VZ |    |    |    |    |    |   |   | AW |   |   |   |   |   |   |   |

55641008

Bild 9 Messwertdarstellung im Format 1 (IB Standard; 15 Bit)

VZ Vorzeichen AW Analogwert

# Typische Analogwerte in Abhängigkeit von der Auflösung

| Sensortyp (Bit 3 | bis 0)      | 0 bis 10                                  | 13                             | 14                  | 15                  |
|------------------|-------------|-------------------------------------------|--------------------------------|---------------------|---------------------|
| Auflösung (Bit 7 | und 6)      | 00 <sub>bin</sub> / 10 <sub>bin</sub>     | 00 <sub>bin</sub>              | 00 <sub>bin</sub>   | 00 <sub>bin</sub>   |
| Prozessdatum (=  | Analogwert) | 0,1 °C / 0,1 °F                           | 1 %                            | <b>0,1</b> Ω        | <b>1</b> Ω          |
| hex              | dez         | [°C] / [°F]                               | [%]                            | <b>[</b> Ω <b>]</b> | <b>[</b> Ω <b>]</b> |
| 8002             | ı           | Drahtbruch                                | _                              | _                   | _                   |
| 8001             | 1           | Messbereich überschritten (vgl. Seite 23) | ı                              | 400                 | 4000                |
| 2710             | 10000       | 1000,0                                    | ı                              | -                   | _                   |
| 0FA0             | 4000        | 400,0                                     | 4000<br>(40 x R <sub>0</sub> ) | 400                 | 4000                |
| 00A0             | 10          | 1,0                                       | 10<br>(0,10 x R <sub>0</sub> ) | 1,0                 | 10                  |
| 0001             | 1           | 0,1                                       | 1<br>(0,01 x R <sub>0</sub> )  | 0,1                 | 1                   |
| 0000             | 0           | 0                                         | 0                              | 0                   | 0                   |
| FFFF             | -1          | -0,1                                      | _                              | _                   | _                   |

| Sensortyp (Bit 3 | bis 0)      | 0 bis 10                                               | 13                | 14                  | 15                  |
|------------------|-------------|--------------------------------------------------------|-------------------|---------------------|---------------------|
| Auflösung (Bit 7 | und 6)      | 00 <sub>bin</sub> / 10 <sub>bin</sub>                  | 00 <sub>bin</sub> | 00 <sub>bin</sub>   | 00 <sub>bin</sub>   |
| Prozessdatum (=  | Analogwert) | 0,1 °C / 0,1 °F                                        | 1 %               | 0,1 Ω               | <b>1</b> Ω          |
| hex              | dez         | [°C] / [°F]                                            | [%]               | <b>[</b> Ω <b>]</b> | <b>[</b> Ω <b>]</b> |
| FC18             | -1000       | -100,0                                                 | ı                 | _                   | _                   |
| 8080             |             | Messbereich unterschritten (vgl. Tabelle auf Seite 23) | -                 | _                   | _                   |
| 8002             |             | Kurzschluss                                            | _                 | _                   | _                   |

| Sensortyp (Bit 3 | bis 0)      | 0 bis 10                                                 | 13                               | 14                | 15                  |
|------------------|-------------|----------------------------------------------------------|----------------------------------|-------------------|---------------------|
| Auflösung (Bit 7 | und 6)      | 01 <sub>bin</sub> / 11 <sub>bin</sub>                    | 01 <sub>bin</sub>                | 01 <sub>bin</sub> | 01 <sub>bin</sub>   |
| Prozessdatum (=  | Analogwert) | 0,01 °C / 0,01 °F                                        | 0,1 %                            | 0,01 Ω            | 0,1 Ω               |
| hex              | dez         | [°C] / [°F]                                              | [%]                              | $[\Omega]$        | <b>[</b> Ω <b>]</b> |
| 8002             | ı           | Drahtbruch                                               | -                                | -                 | ı                   |
| 8001             | I           | > 325,12<br>Messbereich überschritten<br>(vgl. Seite 23) | ı                                | 325,12            | 3251,2              |
| 2710             | 10000       | 100,00                                                   | 1000,0<br>(10 x R <sub>0</sub> ) | 100,00            | 1000,0              |
| 03E8             | 4000        | 10,00                                                    | 100,0<br>(1 x R <sub>0</sub> )   | 10,00             | 100,0               |
| 0001             | 1           | 0,01                                                     | 0,1<br>(0,01 x R <sub>0</sub> )  | 0,01              | 0,1                 |
| 0000             | 0           | 0                                                        | 0                                | 0                 | 0                   |
| FFFF             | -1          | -0,01                                                    | -                                | _                 | _                   |
| D8F0             | -10000      | -100,00                                                  | _                                | _                 | _                   |
| 8080             |             | Messbereich unterschritten (vgl. Seite 23)               | _                                | _                 | _                   |
| 8002             |             | Kurzschluss                                              | _                                | _                 | _                   |



Liegt der Messwert außerhalb des Darstellungsbereiches der Prozessdaten, wird die Fehlermeldung "Messbereich überschritten" bzw. "Messbereich unterschritten" erzeugt.

#### Format 2

Dieses Format können Sie je Kanal über Bit 5 und 4 (Bit-Kombination 01<sub>bin</sub>) des jeweiligen Prozess-daten-Ausgangswortes auswählen.

Der Messwert wird in den Bits 14 bis 3 dargestellt. Die restlichen 4 Bit stehen als Vorzeichen- und Fehler-Bit zur Verfügung.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5  | 4  | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|----|----|---|---|---|---|
| VZ |    | AW |    |    |    |   |   |   | 0 | DB | ВÜ |   |   |   |   |

55200060

Bild 10 Messwertdarstellung im Format 2 (12 Bit)

VZ Vorzeichen AW Analogwert 0 reserviert

DB Drahtbruch/Kurzschluss BÜ Bereichsüberschreitung

# Typische Analogwerte in Abhängigkeit von der Auflösung

| Sensortyp (Bit                     | 3 bis 0)    | RTD-Senso                                                                    | or (0 bis 13)                         |  |  |  |  |
|------------------------------------|-------------|------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Auflösung (Bit                     | 7 und 6)    | 00 <sub>bin</sub> / 10 <sub>bin</sub>                                        | 01 <sub>bin</sub> / 11 <sub>bin</sub> |  |  |  |  |
| Prozessdatum (= A                  | Analogwert) | 0,1 °C / 0,1 °F                                                              | 0,01 °C / 0,01 °F                     |  |  |  |  |
| hex                                | dez         | [°C] / [°F]                                                                  | [°C] / [°F]                           |  |  |  |  |
| xxxx xxxx xxxx xxx1 <sub>bin</sub> |             | Messbereich überschritten (AW = positiver Endwert aus Tabelle auf Seite 23)  |                                       |  |  |  |  |
| 2710                               | 10000       | 1000,0                                                                       | 100,00                                |  |  |  |  |
| 03E8                               | 1000        | 100,0                                                                        | 10,00                                 |  |  |  |  |
| 0008                               | 8           | 0,8                                                                          | 0,08                                  |  |  |  |  |
| 0000                               | 0           | 0                                                                            | 0                                     |  |  |  |  |
| FFF8                               | -8          | -0,8                                                                         | -0,08                                 |  |  |  |  |
| FC18                               | -1000       | -100,0 -10,00                                                                |                                       |  |  |  |  |
| xxxx xxxx xxxx xxx1 <sub>bin</sub> |             | Messbereich unterschritten (AW = negativer Endwert aus Tabelle auf Seite 23) |                                       |  |  |  |  |
| xxxx xxxx xxxx xx1x <sub>bin</sub> |             | Drahtbruch/Kurzschluss (AW = negativer Endwert aus Tabelle auf Se            |                                       |  |  |  |  |

AW Analogwert

x kann die Werte 0 oder 1 annehmen



Liegt der Messwert außerhalb des Darstellungsbereiches der Prozessdaten, wird Bit 0 auf 1 gesetzt.

Bei Drahtbruch/Kurzschluss wird Bit 1 auf 1 gesetzt.

#### Format 3

Dieses Format können Sie je Kanal über Bit 5 und 4 (Bitkombination 10<sub>bin</sub>) des jeweiligen Prozess-daten-Ausgangswortes auswählen.

Der Messwert wird in den Bits 14 bis 0 dargestellt. Ein zusätzliches Bit (Bit 15) steht als Vorzeichen-Bit zur Verfügung.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|----|---|---|---|---|---|---|---|
| VZ |    |    |    |    |    |   |   | AW |   |   |   |   |   |   |   |

55641008

Bild 11 Messwertdarstellung im Format 3 (15 Bit)

VZ Vorzeichen AW Analogwert

# Typische Analogwerte in Abhängigkeit von der Auflösung

| Sensortyp                  | (Bit 3 bis 0)  | RTD-Sensor (0 bis 10)                 | linearer Widerstand (15) |
|----------------------------|----------------|---------------------------------------|--------------------------|
| Auflösung (                | Bit 7 und 6)   | 00 <sub>bin</sub> / 10 <sub>bin</sub> | 00 <sub>bin</sub>        |
| Prozessdatum               | (= Analogwert) | 0,1 °C / 0,1 °F                       | <b>1</b> Ω               |
| hex                        | dez            | [°C] / [°F]                           | <b>[</b> Ω <b>]</b>      |
| 7FFF                       | 32767          | ı                                     | > 2048                   |
| oberer Grenz               | wert* +1 LSB   | Messbereich überschritten             | _                        |
| 7D00                       | 32000          | ľ                                     | 2000                     |
| 2710                       | 10000          | 1000,0                                | 625                      |
| 000A                       | 10             | 1                                     | 0,625                    |
| 0001                       | 1              | 0,1                                   | 0,0625                   |
| 0000                       | 0              | 0                                     | 0                        |
| FFFF                       | -1             | -0,1                                  | _                        |
| FC18                       | -1000          | -100,0                                | _                        |
| unterer Grenzwert* - 1 LSB |                | Messbereich unterschritten            | _                        |
| unterer Grenz              | wert* - 2 LSB  | Drahtbruch/Kurzschluss                | _                        |

| Sensortyp                  | (Bit 3 bis 0)  | RTD-Sensor (0 bis 10)                 | linearer Widerstand (15) |  |
|----------------------------|----------------|---------------------------------------|--------------------------|--|
| Auflösung (                | Bit 7 und 6)   | 01 <sub>bin</sub> / 11 <sub>bin</sub> | 01 <sub>bin</sub>        |  |
| Prozessdatum               | (= Analogwert) | 0,01 °C / 0,01 °F                     | 0,1 Ω                    |  |
| hex                        | dez            | [°C] / [°F]                           | <b>[</b> Ω <b>]</b>      |  |
| 7FFF                       | 32767          | ı                                     | > 4096                   |  |
| oberer Grenz               | wert* +1 LSB   | Messbereich überschritten             | _                        |  |
| 7D00                       | 32000          | 320,00                                | 4000                     |  |
| 2710                       | 10000          | 100,0                                 | 1250                     |  |
| 0001                       | 1              | 0,1                                   | 0,125                    |  |
| 0000                       | 0              | 0                                     | 0                        |  |
| FFFF                       | -1             | -1,0                                  | _                        |  |
| D8F0                       | -10000         | -100,0                                | _                        |  |
| unterer Grenzwert* - 1 LSB |                | Messbereich unterschritten            | _                        |  |
| unterer Grenz              | wert* - 2 LSB  | Drahtbruch/Kurzschluss                | _                        |  |

<sup>\*</sup> Die Grenzwerte finden Sie auf Seite 23.

# Messbereiche

# Messbereiche in Abhängigkeit von der Auflösung (Format IB Standard)

| Auflösung | Temperatursensoren                           |
|-----------|----------------------------------------------|
| 00        | -273 °C bis +3276,8 °C<br>Auflösung: 0,1 °C  |
| 01        | -273 °C bis +327,68 °C<br>Auflösung: 0,01 °C |
| 10        | -459 °F bis +3276.8 °F<br>Auflösung: 0,1 °F  |
| 11        | -459 °F bis +327.68 °F<br>Auflösung: 0,01 °F |



Die Umrechnung von Temperaturwerten in °C nach °F kann nach folgender Formel durchgeführt werden:

$$T [°F] = T [°C] x \frac{9}{5} + 32$$

Dabei sind:

T [°F] Temperatur in °F

T [°C] Temperatur in °C

# **Eingangs-Messbereiche**

| Nr. | Eingang                             | Sensortyp                                       |           |               | pereich<br>unterstützt)                          |
|-----|-------------------------------------|-------------------------------------------------|-----------|---------------|--------------------------------------------------|
|     |                                     |                                                 |           | untere Grenze | obere Grenze                                     |
| 0   |                                     | Pt $R_0$ 10 $\Omega$ bis 3000 $\Omega$          | nach DIN  | -200 °C       | +850 °C                                          |
| 1   |                                     | Pt R <sub>0</sub> 10 $\Omega$ bis 3000 $\Omega$ | nach SAMA | -200 °C       | +850 °C                                          |
| 2   |                                     | Ni R <sub>0</sub> 10 $\Omega$ bis 3000 $\Omega$ | nach DIN  | -60 °C        | +180 °C                                          |
| 3   | Temperatur-                         | Ni R <sub>0</sub> 10 $\Omega$ bis 3000 $\Omega$ | nach SAMA | -60 °C        | +180 °C                                          |
| 4   | sensoren                            | Cu10                                            |           | -70 °C        | +500 °C                                          |
| 5   |                                     | Cu50                                            |           | -50 °C        | +200 °C                                          |
| 6   |                                     | Cu53                                            |           | -50 °C        | +180 °C                                          |
| 7   |                                     | Ni 1000 L&G                                     |           | -50 °C        | +160 °C                                          |
| 8   |                                     | Ni 500 (Viessmann)                              |           | -60 °C        | +250 °C                                          |
| 9   |                                     | KTY81-110                                       |           | -55 °C        | +150 °C                                          |
| 10  |                                     | KTY84                                           |           | -40 °C        | +300 °C                                          |
| 11  | Reserviert                          |                                                 |           |               |                                                  |
| 12  | 176961 AIGH                         |                                                 |           |               |                                                  |
| 13  | Relativer Potenti-<br>ometerbereich |                                                 |           | 0 %           | 4 kΩ / R <sub>0</sub> x 100 %<br>(maximal 400 %) |
| 14  | Linearer                            |                                                 |           | 0 Ω           | 400 Ω                                            |
| 15  | Widerstands-<br>messbereich         |                                                 |           | 0 Ω           | 4000 Ω                                           |



Die Nummer (Nr.) entspricht dem Code des Sensortyps in Bit 3 bis Bit 0 des Prozessdaten-Ausgangswortes.

### Messfehler

### Systematische Messfehler bei der Temperaturmessung mit Widerstandsthermometern

Bei der Messung von Temperaturen mit Widerstandsthermometern sind häufig systematische Messfehler die Ursache für verfälschte Messergebnisse.

Grundsätzlich bestehen drei Möglichkeiten des Sensoranschlusses: 2-, 3- und 4- Leitertechnik.

#### 4-Leitertechnik

Die 4-Leitertechnik ist die messtechnisch genaueste Art zu messen (siehe Bild 12).

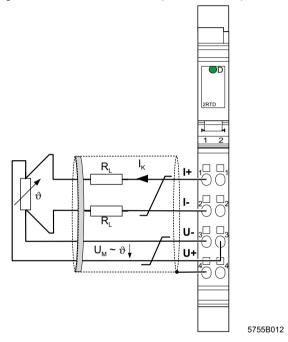



Bild 12 Anschluss von Widerstandsthermometern in 4-Leitertechnik

Bei der 4-Leitertechnik wird über die Leitungen I+ und I- ein Konstantstrom durch den Sensor geschickt. Mittels der zwei weiteren Leitungen U+ und U- wird die temperaturproportionale Spannung am Sensor abgegriffen und gemessen. Die Leitungswiderstände beeinflussen dabei in keiner Weise die Messung.

#### 3-Leitertechnik

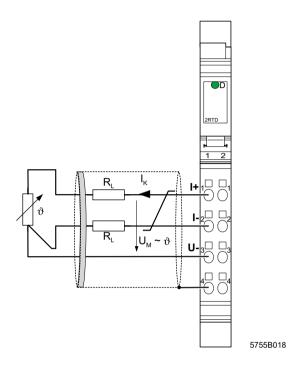



Bild 13 Anschluss von Widerstandsthermometern in 3-Leitertechnik

Bei der 3-Leitertechnik wird in der Klemme durch mehrfache Messung der temperaturproportionalen Spannung und entsprechende Berechnungen der Einfluss des Leitungswiderstandes auf das Messergebnis eliminiert bzw. minimiert. Die Ergebnisse sind qualitativ annähernd so gut, wie bei der 4-Leitertechnik in Bild 12. Die 4-Leitertechnik bietet jedoch in störbelasteter Umgebung bessere Ergebnisse.

#### 2-Leitertechnik

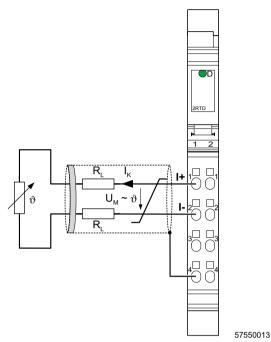



Bild 14 Anschluss von Widerstandsthermometern in 2-l eitertechnik

Die 2-Leitertechnik ist die kostengünstigste Anschlusstechnik. Hier entfallen die Leitungen U+ und U-. Die temperaturproportionale Spannung wird nicht direkt am Sensor gemessen und zusätzlich durch die beiden Leitungswiderstände R<sub>I</sub> verfälscht (siehe Bild 14).

Die auftretenden Messfehler können die gesamte Messung unbrauchbar machen (siehe Diagramme in Bild 15 bis Bild 17). Diese Diagramme zeigen jedoch auch, an welchen Stellen in der Messanordnung Maßnahmen ergriffen werden können, um diese Fehler zu minimieren.

#### Systematische Fehler bei der Temperaturmessung mit 2-Leitertechnik

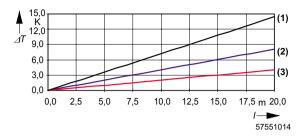



Bild 15 Systematischer Temperaturmessfehler ∆T in Abhängigkeit von der Leitungslänge I

Kurven in Abhängigkeit vom Leitungsquerschnitt A

- (1) Temperaturmessfehler für A =  $0.14 \text{ mm}^2$
- (2) Temperaturmessfehler für A =  $0.25 \text{ mm}^2$
- (3) Temperaturmessfehler für A =  $0,50 \text{ mm}^2$

(Messfehler gültig für:

Kupferleitung  $\chi$  = 57 m/Ωmm<sup>2</sup>, T<sub>U</sub> = 25 °C und PT-100-Sensor)

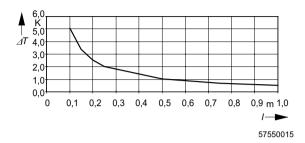



Bild 16 Systematischer Temperaturmessfehler  $\Delta T$  in Abhängigkeit vom Leitungsquerschnitt A

(Messfehler gültig für:

Kupferleitung  $\chi$  = 57 m/Ωmm<sup>2</sup>, T<sub>U</sub> = 25 °C, I = 5 m und PT-100-Sensor)

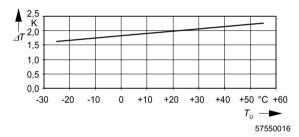



Bild 17 Systematischer Temperaturmessfehler  $\Delta T$  in Abhängigkeit von der Leitungstemperatur  $T_{LL}$ 

(Messfehler gültig für: Kupferleitung  $\chi$  = 57 m/ $\Omega$ mm<sup>2</sup>, I = 5 m, A = 0,25 mm<sup>2</sup> und PT-100-Sensor)

Aus allen Diagrammen geht die Erhöhung des Leitungswiderstandes als Ursache für den Messfehler hervor.

Eine ganz wesentliche Verbesserung ergibt daher der Einsatz von PT-1000-Messfühlern. Aufgrund des 10-fach höheren Temperatur-Koeffizienten  $\alpha$  ( $\alpha$  = 0,385  $\Omega$ /K bei PT100 zu  $\alpha$  = 3,85  $\Omega$ /K bei PT1000) wird der Einfluss des Leitungswiderstandes auf die Messung um den Faktor 10 heruntergesetzt. Alle Fehler in den oben genannten Diagrammen würden um den Faktor 10 geringer ausfallen.

Diagramm 1 zeigt deutlich den Einfluss der Leitungslänge auf den Leitungswiderstand und somit auf den Messfehler. Die Konsequenz daraus liegt in möglichst kurzen Sensorleitungen.

Diagramm 2 zeigt den Einfluss des Leitungsquerschnitts auf den Leitungswiderstand. Man erkennt, dass Leitungen mit einem Querschnitt kleiner 0,5 mm² den Fehler exponentiell ansteigen lassen.

Das Diagramm 3 zeigt den Einfluss der Umgebungstemperatur auf den Leitungswiderstand. Dieser Parameter spielt keine große Rolle, kann aber auch kaum beeinflusst werden und ist hier nur der Vollständigkeit halber erwähnt worden.

Die Gleichung zur Berechnung des Leitungswiderstandes ergibt sich als:

$$R_{L} = R_{L20} \times (1 + 0,0043 \frac{1}{K} \times T_{U})$$

$$R_{L} = \frac{I}{\gamma \times A} \times (1 + 0,0043 \frac{1}{K} \times T_{U})$$

Dabei sind:

Rı

| · `L             |                                                                   |
|------------------|-------------------------------------------------------------------|
| R <sub>L20</sub> | Leitungswiderstand bei 20 $^{\circ}\text{C}$ in $\Omega$          |
| 1                | Leitungslänge im m                                                |
| χ                | Spezifischer elektrischer Widerstand von Kupfer in $\Omega$ mm²/m |
| Α                | Leitungsquerschnitt in mm <sup>2</sup>                            |
| 0,0043 1/K       | Temperaturkoeffizient für Kupfer                                  |
| T <sub>U</sub>   | Umgebungstemperatur (Leitungstemperatur) in °C                    |

Leitungswiderstand in Ω

Da sich in der Messanordnung zwei Leitungswiderstände befinden (hin und rück) muss der Wert verdoppelt werden.

Mit dem durchschnittlichen Temperaturkoeffizienten  $\alpha$  ( $\alpha$  = 0,385  $\Omega$ /K bei PT100;  $\alpha$  = 3,85  $\Omega$ /K bei PT1000) erhält man den absoluten Messfehler in Kelvin [K] für Platin-Sensoren nach DIN.

# **Toleranz- und Temperaturverhalten**

# Typische Messtoleranzen bei 25°C

|                               | α         | 2-Leitertec | hnik        | 3-Leitertechnik |         | 4-Leitertechnik |         |
|-------------------------------|-----------|-------------|-------------|-----------------|---------|-----------------|---------|
|                               | bei 100°C | relativ [%] | absolut     | relativ [%]     | absolut | relativ [%]     | absolut |
| Temperatur-<br>sensoren       |           |             |             |                 |         |                 |         |
| PT 100                        | 0,385 Ω/Κ | ±0,03 + x   | ±0,26 K + x | ±0,03           | ±0,26 K | ±0,02           | ±0,2 K  |
| PT 1000                       | 3,85 Ω/K  | ±0,04 + x   | ±0,31 K + x | ±0,04           | ±0,31 K | ±0,03           | ±0,26 K |
| Ni 100                        | 0,617 Ω/Κ | ±0,09 + x   | ±0,16 K + x | ±0,09           | ±0,16 K | ±0,07           | ±0,12 K |
| Ni 1000                       | 6,17 Ω/K  | ±0,11 + x   | ±0,2 K + x  | ±0,11           | ±0,2 K  | ±0,09           | ±0,16 K |
| Cu 50                         | 0,213 Ω/K | ±0,24 + x   | ±0,47 K + x | ±0,24           | ±0,47 K | ±0,18           | ±0,35 K |
| Ni 1000 L&G                   | 5,6 Ω/K   | ±0,13 + x   | ±0,21 K + x | ±0,13           | ±0,21 K | ±0,11           | ±0,18 K |
| Ni 500 Viess-<br>mann         | 2,8 Ω/Κ   | ±0,17 + x   | ±0,43 K + x | ±0,17           | ±0,43 K | ±0,14           | ±0,36 K |
| KTY 81-110                    | 10,7 Ω/K  | ±0,07 + x   | ±0,11 K + x | ±0,07           | ±0,11 K | ±0,06           | ±0,09 K |
| KTY 84                        | 6,2 Ω/K   | ±0,06 + x   | ±0,19 K + x | ±0,06           | ±0,19 K | ±0,05           | ±0,16 K |
| Linearer<br>Widerstand        |           |             |             |                 |         |                 |         |
| $0$ $\Omega$ bis 400 $\Omega$ |           | ±0,025 + x  | ±100 mΩ + x | ±0,025          | ±100 mΩ | ±0,019          | ±75 mΩ  |
| 0 Ω bis 4 kΩ                  |           | ±0,03 + x   | ±1,2 Ω + x  | ±0,03           | ±1,2 Ω  | ±0,025          | ±1 Ω    |

 $<sup>\</sup>alpha$ : Mittlere Empfindlichkeit zur Berechnung der Toleranzangaben.

x: Zusätzlicher Fehler durch den Anschluss in 2-Leitertechnik (siehe "Systematische Fehler bei der Temperaturmessung mit 2-Leitertechnik" auf Seite 26).

#### Maximale Messtoleranzen bei 25°C

|                         | α         |             | 2-Leitertechnik |             | 3-Leitertechnik |             | 4-Leitertechnik          |  |
|-------------------------|-----------|-------------|-----------------|-------------|-----------------|-------------|--------------------------|--|
|                         | bei 100°C | relativ [%] | absolut         | relativ [%] | absolut         | relativ [%] | absolut                  |  |
| Temperatur-<br>sensoren |           |             |                 |             |                 |             |                          |  |
| PT 100                  | 0,385 Ω/Κ | ±0,12 + x   | ±1,04 K + x     | ±0,12 %     | ±1,04 K         | ±0,10 %     | ±0,83 K                  |  |
| PT 1000                 | 3,85 Ω/K  | ±0,15 + x   | ±1,3 K + x      | ±0,15 %     | ±1,3 K          | ±0,12 %     | ±1,04 K                  |  |
| Ni 100                  | 0,617 Ω/Κ | ±0,36 + x   | ±0,65 K + x     | ±0,36 %     | ±0,65 K         | ±0,29 %     | ±0,52 K                  |  |
| Ni 1000                 | 6,17 Ω/K  | ±0,45 + x   | ±0,81 K + x     | ±0,45 %     | ±0,81 K         | ±0,36 %     | ±0,65 K                  |  |
| Cu 50                   | 0,213 Ω/Κ | ±0,47 + x   | ±0,94 K + x     | ±0,47 %     | ±0,94 K         | ±0,38 %     | ±0,75 K                  |  |
| Ni 1000 L&G             | 5,6 Ω/K   | ±0,56 + x   | ±0,89 K + x     | ±0,56 %     | ±0,89 K         | ±0,44 %     | ±0,71 K                  |  |
| Ni 500 Viess-<br>mann   | 2,8 Ω/Κ   | ±0,72 + x   | ±1,79 K + x     | ±0,72 %     | ±1,79 K         | ±0,57 %     | ±1,43 K                  |  |
| KTY 81-110              | 10,7 Ω/K  | ±0,31 + x   | ±0,47 K + x     | ±0,31 %     | ±0,47 K         | ±0,25 %     | ±0,37 K                  |  |
| KTY 84                  | 6,2 Ω/K   | ±0,27 + x   | ±0,81 K + x     | ±0,27 %     | ±0,81 K         | ±0,22 %     | ±0,65 K                  |  |
| Linearer<br>Widerstand  |           |             |                 |             |                 |             |                          |  |
| 0 Ω bis 400 Ω           |           | ±0,10 + x   | ±400 mΩ + x     | ±0,10 %     | ±400 mΩ         | ±0,08 %     | $\pm 320~\text{m}\Omega$ |  |
| 0 Ω bis 4 kΩ            | _         | ±0,13 + x   | ±5 Ω + x        | ±0,13 %     | ±5 Ω            | ±0,10 %     | ±4 Ω                     |  |

α: Mittlere Empfindlichkeit zur Berechnung der Toleranzangaben.

# Temperaturverhalten bei -25 °C bis +55 °C

|                         | typisch    | maximal    |
|-------------------------|------------|------------|
| 2-, 3-, 4-Leitertechnik | ±12 ppm/°C | ±45 ppm/°C |

x: Zusätzlicher Fehler durch den Anschluss in 2-Leitertechnik (siehe "Systematische Fehler bei der Temperaturmessung mit 2-Leitertechnik" auf Seite 26).

# **Technische Daten**

| Allgemeine Daten                                                                                              |                                                                                               |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Gehäusemaße (Breite x Höhe x Tiefe)                                                                           | 12,2 mm x 120 mm x 66,6 mm                                                                    |  |  |  |
| Gewicht                                                                                                       | 46 g (ohne Stecker)                                                                           |  |  |  |
| Betriebsart                                                                                                   | Prozessdatenbetrieb mit 2 Worten                                                              |  |  |  |
| Anschlussart der Sensoren                                                                                     | 2-, 3- und 4-Leitertechnik                                                                    |  |  |  |
| Zulässige Temperatur (Betrieb)                                                                                | -25 °C bis +55 °C                                                                             |  |  |  |
| Zulässige Temperatur (Lagerung/Transport)                                                                     | -25 °C bis +85 °C                                                                             |  |  |  |
| Zulässige Luftfeuchtigkeit (Betrieb)                                                                          | 75 % im Mittel, 85 % gelegentlich (keine Betauung)                                            |  |  |  |
| Im Bereich von -25 °C bis +55 °C sind geeignete Maßnahmen gegen erhöhte Luftfeuchtigkeit (> 85 %) zu treffen. |                                                                                               |  |  |  |
| Zulässige Luftfeuchtigkeit (Lagerung/Transport)                                                               | 75 % im Mittel, 85 % gelegentlich (keine Betauung)                                            |  |  |  |
| <b>           </b>                                                                                            | er darf gelegentlich am Außengehäuse auftreten,<br>rzeug in einen geschlossenen Raum gebracht |  |  |  |
| Zulässiger Luftdruck (Betrieb)                                                                                | 80 kPa bis 106 kPa (bis zu 2000 m üNN)                                                        |  |  |  |
| Zulässiger Luftdruck (Lagerung/Transport)                                                                     | 70 kPa bis 106 kPa (bis zu 3000 m üNN)                                                        |  |  |  |
| Schutzart                                                                                                     | IP 20 nach IEC 60529                                                                          |  |  |  |
| Schutzklasse                                                                                                  | Klasse 3 gemäß VDE 0106, IEC 60536                                                            |  |  |  |

| Schnittstelle          |                 |
|------------------------|-----------------|
| Lokalbus-Schnittstelle | Datenrangierung |

| Leistungsbilanz                                 |                  |  |  |  |
|-------------------------------------------------|------------------|--|--|--|
| Logikspannung U <sub>L</sub>                    | 7,5 V            |  |  |  |
| Stromaufnahme aus U <sub>L</sub>                | 43 mA (typisch)  |  |  |  |
| Peripherie-Versorgungsspannung U <sub>ANA</sub> | 24 V DC          |  |  |  |
| Stromaufnahme an U <sub>ANA</sub>               | 11 mA (typisch)  |  |  |  |
| Leistungsaufnahme gesamt                        | 590 mW (typisch) |  |  |  |

| Versorgung der Modulelektronik und der Peripherie durch Busklemme / Einspeiseklemme |                     |  |
|-------------------------------------------------------------------------------------|---------------------|--|
| Anschlusstechnik                                                                    | Potentialrangierung |  |

| Analoge Eingänge                                              |                                                |
|---------------------------------------------------------------|------------------------------------------------|
| Anzahl                                                        | zwei Eingänge für resistive Temperatursensoren |
| Anschluss der Signale                                         | 2-, 3- oder 4-adrige, geschirmte Sensorleitung |
| Verwendbare Sensorentypen                                     | Pt, Ni, Cu, KTY                                |
| Kennliniennormen                                              | nach DIN / nach SAMA                           |
| Wandlungszeit des A/D-Wandlers                                | typisch 120 μs                                 |
| Prozessdaten-Update                                           | abhängig von der Anschlusstechnik              |
| Beide Kanäle in 2-Leitertechnik                               | 20 ms                                          |
| Ein Kanal in 2-Leitertechnik/<br>ein Kanal in 4-Leitertechnik | 20 ms                                          |
| Beide Kanäle in 3-Leitertechnik                               | 32 ms                                          |

| Schutzeinrichtungen |  |
|---------------------|--|
| Keine               |  |

# **Potentialtrennung**



Für die Potentialtrennung der Logikebene vom Peripheriebereich ist es notwendig, die Busklemmenversorgung  $U_{BK}$  und die Peripherieversorgung  $(U_M/U_S)$  aus getrennten Netzgeräten bereitzustellen. Eine Verbindung der Versorgungsgeräte im 24-V-Bereich ist nicht zulässig!

#### **Gemeinsame Potentiale**

24-V-Hauptspannung  $U_{\overline{M}}$ , 24-V-Segmentspannung  $U_{\overline{S}}$  und GND liegen auf demselben Potential. FE stellt einen eigenen Potentialbereich dar.

### **Getrennte Potentiale in der Klemme VARIO RTD 2**

| Prüfstrecke                                                              | Prüfspannung           |
|--------------------------------------------------------------------------|------------------------|
| 7,5-V-Versorgung (Buslogik) / 24-V-Analogversorgung (analoge Peripherie) | 500 V AC, 50 Hz, 1 min |
| 7,5-V-Versorgung (Buslogik) / Funktionserde                              | 500 V AC, 50 Hz, 1 min |
| 24-V-Analogversorgung (analoge Peripherie) / Funktionserde               | 500 V AC, 50 Hz, 1 min |

| Fehlermeldungen an das übergeordnete Steuerungs- oder Rechnersystem |                                              |  |  |
|---------------------------------------------------------------------|----------------------------------------------|--|--|
| Ausfall der internen Spannungsversorgung ja                         |                                              |  |  |
| Ausfall oder Unterschreiten der Logikspannung U <sub>L</sub>        | ja, Peripheriefehlermeldung an die Busklemme |  |  |

| Fehlermeldungen über Prozessdaten |                     |
|-----------------------------------|---------------------|
| Peripherie-/Anwenderfehler        | ja (siehe Seite 15) |

# **Bestelldaten**

| Beschreibung                                                                                     | Artikel     | Bestell-Nr.    |
|--------------------------------------------------------------------------------------------------|-------------|----------------|
| Klemme mit zwei resistiven Temperatursensor-<br>Eingängen<br>incl. Stecker und Beschriftungsfeld | VARIO RTD 2 | KSVC-103-00321 |

PMA Prozeß- und Maschinen-Automation GmbH

Miramstrasse 87 34123 Kassel Germany



+ 49 - (0) 561 505 - 1307



+ 49 - (0) 561 505 - 1710



www.pma-online.de